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Al~traet--Following the purely kinematical developments of Part I, a rigorous analysis is presented 
of the "almost" time-periodic low Reynolds number hydrodynamics of a spatially periodic suspension 
of identical convex particles in a Newtonian liquid undergoing a macroscopically homogeneous linear 
shear flow. By considering the case of a single particle within a unit cell of the instantaneous spatially 
periodic configuration, the quasistatic dynamical analysis of this infinite-particle system is effeoted in 
much the same way as for a single particle suspended in an unbounded fluid. This is accomplished via 
the introduction of a partitioned hydrodynamic Stokes resistance matrix, linearly relating the force, 
couple and stresslet on the particle in the unit cell to the translational and rotational partiele-(mean) 
suspension slip velocities and the mean rate-of-strain of the suspension. In contrast with the 
unbounded fluid case for a given geometry of the individual particles, the (purely geometric) 
elements of the resistance matrix depend upon the instantaneous lattice configuration. 

These dynamic quasistatic calculations for a given instantaneous lattice conformation, in 
particular that for the stresslet, are then appropriately averaged over both space and time for the class 
of almost time-periodic, lattice-reproducing, flows discussed in Part I. (In actually performing the 
time average, an important distinction is drawn between the ergodic and deterministic shear 
processes whose kinematical basis was laid in Part I.) In turn, this averaged dynamical information is 
translated into knowledge of the rheological properties of the macroscopically homogeneous 
suspension. 

A rigorous asymptotic, lubrication-theory analysis is performed during the course of an 
illustrative calculation of the rheologieal properties of a concentrated suspension of almost-touching 
spheres in a simple shear flow. Contrary to the findings of a previous heuristic treatment of this same 
lubrieation-theory problem---one that ignores evolutionary variations in the instantaneous geomet- 
rical configuration of the spatially periodic suspension as the shear proceeds--the time-average 
properties of the suspension are found to be nonsingular in the limit. 

Finally, brief comments are offered on potential extensions of the scheme to include nonlinear 
phenomena, such as nonNewtonian fluids and inertial effects. 

1. I N T R O D U C T I O N  

Most analyses of the rheological properties of macroscopically homogeneous suspensions 
ignore the intrinsically time-dependent nature of the local particle-scale geometrical 
configuration of the suspension. This unsteady motion arises from the relative motion of 
adjacent particles suspended in the shearing motion in which they participate. Such 
quasisteady analyses implicitly or explicitly leap directly to some time-average spatially 
homogeneous representation (e.g. "random") of the mean geometrical configuration by 
simply ignoring the fundamental unsteadiness of the local flow field--as in "single particle" 
calculations in dilute suspensions (Brenner 1974). The latter approach, though perhaps 
correctly yielding the relative time-average spatial distribution of particle centers, fails to 
come to grips with the fundamental problem of how this essentially time-average kinemati- 
cal information is to be coupled to the instantaneous quasistatic local hydrocynamic 
boundary-value problems posed, whose solution is prerequisite to establishing the mean 
suspension properties. 

This conceptual dilemma clearly leaves a logical void in the further development of 
suspension rheology in concentrated systems, and by doing so renders suspect the rheological 
conclusions gleaned from such internally inconsistent analyses. This problem is resolved in 
the present paper, albeit in the very restricted context of perfectly ordered particle arrays 
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and their temporal evolution under the influence of a shearing flow which acts to reproduce 
the detailed particle arrangement (almost) periodically in time. 

The first paper of this series (Adler & Brenner 1985; hereafter referred to as I) was 
devoted to a study of the kinematics of a spatially periodic suspension of identical spherical 
particles, employing the geometry of numbers. This new analytical perspective will be here 
extended to include a rigorous calculation of the average dynamical properties of a 
suspension subjected to a macroscopic linear shear flow. By "average" is meant over space 
and time, since both of these independent variables enter into a determination of the mean 
suspension properties. 

As emphasized in I, a large number of equations have been proposed attempting to 
describe the relationship existing between the suspension viscosity and the volumetric solids 
concentration q~. To these may be added several thorough reviews of experimental results 
(Frisch & Simha 1956, Rutgers 1962, Thomas 1965 and Jeffery & Acrivos 1976). 

Initially, attention will be focused in section 2 on the traditional situation where the 
suspending fluid is Newtonian and the particle Reynolds number sufficiently small to permit 
neglect of inertial effects. Pertinent Darcy-scale fields of interest, e.g. velocity, stress, etc. 
will be introduced and subsequently related to the spatial average of the local fields. 

Methods which are now relatively standard (Happel & Brenner 1965) are used in section 
3 to describe the instantaneous quasistatic properties of the suspension. This scheme employs 
various intrinsic, purely geometric resistance matrices, arising from the linear character of 
the overall problem. Since these methods impose no limitations upon the shapes of the 
particles that fall within their purview, the analysis may be applied to nonspherical particles. 
However, when the particles are spherical (more generally centrosymmetric), geometric 
symmetry considerations yield important simplifications in the forms of these resistance 
matrices. 

Time-averaging procedures are detailed in section 4 for the two-dimensional, almost 
periodic flows whose basic kinematics were investigated at length in I. A distinction between 
ergodic and nonergodic shearing processes is introduced. This distinction, though classical in 
the "ergodic theory" study of complex dynamical systems (Arnold & Avez 1968), appears 
new within the context of suspension flows. The time-average value is shown to depend upon 
the specific shearing process when it is not ergodic. Conversely, in the ergodic case, the 
time-average value is independent of the explicit process. The time average is then calculated 
in terms of the Fourier components of the function under consideration. This procedure 
reveals the explicit dependence of the average upon the particular shearing process. By way 
of example, these concepts are applied to a Couette flow between two regularly grooved 
corrugated planes, when the depth of the grooves is small compared with the gap width 
between the two planes. 

Concentrated sphere suspensions are studied in detail in section 5. Lubrication theory is 
used for calculating the stress tensor via a rigorous version of the heuristic calculations of 
Frankel & Acrivos (1967). Possible extensions of the averaging procedure are made in 
Section 6 for various classes of nonNewtonian fluids. Some remarks on the influence of 
inertia complete the discussion. 

2. BASIC EQUATIONS AND FIELDS AT THE DARCY SCALE 

2.1. Description of the problem 
Consider a spatially periodic suspension of identical particles immersed in an incompres- 

sible Newtonian fluid. The lattice A along which the particles are repetitively arranged is 
characterized by the second-order tensor 

L = lie1 + 12e2 + 13e3, [2.1] 
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where el, e2, e3 is an orthonormal basis of the space R 3 and It, 12, 13 are three independent 
lattice vectors, which form a basis for A. 

The position of an arbitrary point permanently affixed to the particles is denoted by R.: 

R, =nll l  + n212 + n313, [2.2] 

where {nj, n2,, n3} -- {n} are integers. For spherical particles, the particular point is 
conveniently chosen to lie at the sphere center 0. 

Stokes equations of motion governing the flow of a Newtonian fluid are 

Vp = 2/~V • S [2.3a] 

and 

V .  v = 0, [2.3b] 

where p is the pressure, ~ the viscosity, v the velocity and 

S = '/2 [~7v + (Vv)t] [2.4] 

the rate-of-strain tensor. Alternatively, in terms of the local stress tensor P, defined by 

P = - p l  + 2#S, [2.5a] 

equaton [2.3a] is equivalent to 

v .  p = 0. [2.5b] 

At the surface Sp{n} of the particle positioned at R., adherence of the fluid requires 
satisfaction of the boundary condition 

v(R)  = U .  + ft, x r, [2.6] 

with U. and fl. the particle's translational and angular velocities. Local position vector r, 
defined by 

R = R,  + r, [2.7] 

terminates on the particle surface (see figure 1). 
Imagine the suspension subjected to a macroscopic, homogeneous, linear shear flow, 

characterized by the second-order tensor G. The resulting local velocity field created at a 
point R of the spatially periodic suspension will be assumed to satisfy the "jump" condition 

v(R + R . )  - v(R)  = R ,  • G, [2.8] 

Figure 1. Geometry of the spatially periodic suspension. O and O. are analogous points inside the 
particles. 



390 P. M A D L E R  et al  

where G is the position- and time-independent macroscopic velocity gradient. This relation is 
assumed to apply whether R lies inside or outside of a particle. Fluid and particle 
incompressibility require that G be traceless. Explicitly, 

tr 6 = O. [2.9] 

This completes the general description of the problem. However, a nonspherical particle 
necessitates orientational considerations too. Characterization of this orientation can be 
achieved via a trio of body-fixed unit vectors permanently locked into, or otherwise affixed 
to, the particles, so as to rotate with them under the influence of the shear or other orienting 
torque (Brenner 1981). A precise account of the external forces and torques which act upon 
the particles will be rendered later. 

2.2. Darcy-scale kinematics 
Condition [2.8] is equivalent to assuming the gradient of the local velocity field to be 

spatially periodic: 

Vv(R) = Vv(R + R.) .  [2.10] 

According to a fundamental decomposition theorem (Brenner & Adler 1985), any tensor- 
valued field v whose gradient Vv is spatially periodic can be expressed as the sum 

v(R) = R .  G + ~'(a)  [2.111 

of a spatially periodic field ~'(R) and a linearly varying field R • G, wherein 

G = ds v = lattice constant [2.12] 
o 

is a tensorial lattice constant whose rank exceeds that of v by one. Apart from possessing the 
same value throughout the entire medium, a lattice constant (Brenner & Adler 1985) 
possesses the property of being explicitly and implicitly independent of the mode of 
partitioning the lattice into unit cells; that is, it is an intrinsic property of the lattice, rather 
than of the unit cell, despite the fact that its value is derived by performing an integration 

over a unit cell. 
The translational velocity U. of particle {n} may similarly be decomposed as 

U. = Uo + R, • G, [2.13] 

in which Uo is the velocity at the locator point Ro of the particle in cell {0}. 
As a consequence of [2.6], [2.8] and [2.13] the angular velocity ~ of particle n proves to 

be independent of n. Accordingly, ft, will henceforth be denoted unambiguously as ft. 
For future reference it is convenient to summarize here some basic integral identities. 

Over any closed surface S bounding a volume r, 

f s  ds = 0, [2.14a] 

~s dsR = Ir, [2.14b] 

and 

l~s RdsR=lR+RI, 
7 

[2.14c] 
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in which 

= _~.1 f R d3R [2.15] 

denotes the center of volume of r. In the above, ! is the dyadic idemfactor, ds an element of 
surface area having the direction of the outer normal to r, and d3R is a volume element. 

It is necessary in the subsequent analysis to introduce an intermediate length scale .£ 
(Brenner & Adler 1985) such that 

L >> .£ >> 1, [2.16] 

where L and l are respectively characteristic linear dimensions of the suspension and unit 
cell. The various macroscopic, suspension- or Darcy-scale fields of physical interest are 
obtained by volume averaging of the relevant local fields over an intermediate volume ¢V = 
0(£3). This volume is centered about the origin of the R coordinate system, defined by 

lfv 'v Rd3R=0" [2.17] 

An elementary application of this averaging procedure yields the mean, or Darcy-scale, 
velocity vector 

1 
= / v d3R. [2.18] ¥ Jv 

Though this field elicits no real interest in and of itself, it nevertheless serves to introduce 
several important subsequent relations and Darcy-scale dependent variables. 

Among these is the mean interstitial fluid velocity vector ~*, defined as 

1 
v* = V"v--- f l . I  ¢' d3R' [2.19] 

with rI{n} the interstitial fluid volume within cell {n}. This definition suggests the further 
decomposition 

~' = ~* + i(R) [2.201 

of the spatially periodic component of the velocity field appearing in [2.11] into a nonzero 
mean part ~* and a zero mean part ¢, satisfying the relation 

~ / f v  ¢(R) d3R = 0. [2.211 

Thus, the penultimate decomposition (ef. [2.26]) of the velocity field may be written as 

v(R) = i*  + R .  G + ¢(R), [2.221 

whose fundamental significance will appear later. 
The macroscopic velocity gradient G represents the average value (over the entire cell ~'o) 

of the microscopic gradient Vv, when the velocity field is continuous across the fluid-particle 
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interface. This is easily proved by observing that, by definition, 

V,d'R 
T o  ro 

1 ~ d s V + G ,  
7"o o 

[2.23] 

upon employing the decomposition [2.11 ]. The first integral vanishes as a consequence of the 
general fact (Brenner & Adler 1985) that the flux of any spatially periodic field h across the 
closed surface of a cell of any shape is identically zero. 

As usual, the macroscopic gradient G may be decomposed into symmetric and antisym- 
metric parts, denoted by S and A, respectively: 

G = S + A. [2.24] 

To the antisymmetric tensor A = 1/2 [Vv - (Vv)t], one can associate the pseudovector 

= '/2 v x v, [2.251 

representing the macroscopic angular velocity of the suspension. Consequently, [2.2] can be 
further decomposed as 

v(R)=~* +~xR+R.§+~(R).  [2.26] 

Introduce [2.13] and [2.26] into boundary condition [2.6] to obtain 

= ( U o - ~ * )  + ( ~ 2 - ~ ) x r - r . S  onsp. [2.27] 

This linear form will prove fundamental in the subsequent analysis. 

2.3. Darcy-scale dynamics 
We shall here extend to sheared suspensions, macroscopic Darcy-scale entitities origi- 

nally introduced (Brenner & Adler 1985) for flow in stationary porous media, Included 
among these are external body-force and couple densities, and stresses. The explicit 
formulation chosen will be of sufficient generality to permit the resulting equations and 
properties to be applied to situations where the suspending fluid manifests several types of 
non-Newtonian behavior. 

The basic properties to be discussed arise as a direct consequence of the assumption 
[2.10] of a spatially periodic velocity gradient. As an immediate consequence of its definition 
[2.4], the local rate of strain S is spatially periodic. Stokes equations [2.3a] then show that 
the pressure gradient too is spatially periodic. Explicitly, 

Vv, S, Vp are spatially periodic. [2.28] 

Hence, we can apply to the local pressure field p the fundamental decomposition theorem 
[2.11] already used for v. This yields 

p(R) =/)(R) - R .  F, [2.29] 

where ,h(R) is a spatially periodic scalar field and F a vectorial lattice constant. As in the 
generic relation [2.12], F is the vector 

= _ 1 ,~  dsp = a lattice constant. [2.30] 
T o Oro 
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A relation exists between F and the hydrodynamic force 

F = f~,l.I ds • P [2.31] 

exerted by the fluid on the particle in cell {n}. Here, ds is directed out of the particle. Stokes' 
equation [2.5b] allows performance of the stress integration over the cell surface, rather than 
the particle surface; that is, 

F = -f~ot,I ds • P. [2.32] 

The stress P can be decomposed in accordance with [2.5a]. As a consequence of [2.28] the 
contribution of the periodic component over the cell surface vanishes, whereupon [2.32] 
reduces to 

F = - f~ol,J dsp.  [2.33] 

Comparison with [2.30] reveals that 

F = roF. [2.34] 

Since both ro and F are lattice constants it follows that 

F = a lattice constant. [2.351 

Let Fce) denote the total external force exerted upon the particle(s) in cell {n}. This force 
may arise from gravity, for instance, in the case of nonneutrally buoyant particles. As inertia 
is neglected throughout the present work, Newton's laws of motion require that the sum of 
the various forces exerted upon the particle(s) be zero. Explicitly, 

F + F Ce) = 0. [2.36] 

Thus, according to [2.35], the external force exerted on each particle is a lattice constant. 
From a physical point of view no other possibility exists. 

As a consequence of [2.8], [2.34] and 12.36], the pressure field is spatially periodic when 
the net external force exerted on each of the particles is identically zero, such as obtains for a 
suspension of neutrally buoyant particles. 

The hydrodynamic couple exerted by the fluid upon the entire contents (fluid plus 
particles) of fit is defined as 

1 t ~  
N = ~  ~ b  R x  ( d S . P ) ,  [2.37l Jolt 

where At is the number of unit cells contained in the intermediate volume fit, and 0fit is the 
external surface. In view of [2.29] the stress tensor P may be decomposed into periodic and 
aperiodic components: 

P = P + I (R.  F), [2.38] 

wherein 

~, = -t# + 2us. [2.39] 
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In [2.37] the linearly varying portion of P can be eliminated since the origin of R coincides 
with the center of gravity of the volume fit. The remaining integration reduces to a 
quadrature over the boundary 0¢o of a single unit cell. Consequently, 

N=f0~ rx  (ds.P)  + 0(I). [2.40a] 
o 

Equivalently, 

N = . ~  r x  ( d s . P )  + 0(l). [2.40b] 
o 

By definition, the external couple N ~) exerted upon the particles by an agency lying 
outside of the suspension is 

1 E~ffZ f~ ' R x ( d s ' . P ) ,  [2.41] N(e) = ~ I,I 

where ds' is directed into the particle surface(s) sp. Since Stokes' equation [2.5b] may be 
equivalently written as 

V .  (P x R) = 0, [2.421 

the fundamental equilibrium equation 

N + N (e) = 0 [2.43] 

relating the hydrodynamic and external couples is easily derived. A more convenient 
expression for the external couple [2.41] is 

N ~e)= r x ( d s ' . P )  +7o  ~o rd3R x F + O ( l ) .  [2.44] 

It can be proved (Brenner & Adler 1985) that N and N re) actually qualify as couples, since 
they do not depend upon the choice of origin from which the local position vector r = R. - R 
is to be measured. 

2.4. Macroscopic equations 
Next, consider the Darcy-scale stress, defined as the volume average, 

1 
= f P d3R, [2.45] ¥ J~ 

of the local stress P. Since fit is centered about R = 0, the preceding reduces to 

= 70 ~ b d3R, [2.46] 

upon using [2.17] and [2.38]. (Of course the same result holds independently of the choice of 
(e) origin for a neutrally buoyant suspension, F = 0.) 

According to [2.5b], P is divergence free. As such, it may be expressed in the form 

P = V .  (PR). [2.47] 
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Consequently, the Darcy-scale stress [2.45] may be written equivalently as 

1 
= q~" R d s .  P [2.48a] 

Jo~¢ 

o r  

= ro f~o r ds .  I ~, [2.48b] 

upon employing [2.38], [2.15], [2.14c], [2.17] and [2.7]. 
As usual, P may be decomposed into its isotropic and deviatoric portions 

= - I~ + T, [2.49] 

in which 

= - I/3 I: P [2.50al 

and 

=~o  o r l - ~ l r  . d s . P .  [2.50b] 

This last equality holds only to within an error of O(1), which is negligible. 
The deviatoric part T of the macroscopic stress tensor may itself be decomposed into 

symmetric and antisymmetric portions. The symmetric part, denoted by ¥, adopts the form 

= I/2 (P + P~) - 1/3 I ( l :  P), [2.511 

wherein the dagger represents the transposition operator. This expression is more easily 
transformed by returning to the definition [2.45] of the macroscopic stress. Integrate over 'Vy 
and ~'p, and use the divergence theorem to express the integrals over flip as equivalent 
surface integrals over the particle surfaces contained in ~'. Conventional manipulations 
permit further reductions of the resulting integrals to comparable integrals extended over the 
unit cell. This eventually yields 

= ~ro d s .  Pr + r d s .  b - ~ l d s .  I ~ • r 

-Lf + b* -2 ] + 2to ~, -~l(l: b) d3R. [2.521 

This second integral may be equivalently expressed as (cf. [2.5a]) 

2__~.o fv 8 d3R. [2.53] 

Further modifications result from utilizing eq [2.4], the divergence theorem and [2.12] to 
obtain the identity 

[2.54] 
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The last surface integral vanishes as a consequence of the boundary condition [2.6] and the 
general identities [2.14]. 

Together, the preceding relations combine to yield the formula 

1 
7 = 2u g + -- A, [2.55] 

T o 

where 

A = ( d s .  P .  r + r .  d s .  P) - ~ l ( d s .  P .  r) [2.56] 

is the particle stress, representing the contribution of the particles to the macroscopic stress. 
In the preceding, the surface element ds is directed out of the particle into the fluid. 

The antisymmetric part of the macroscopic stress tensor P may be represented 
alternatively by a pseudovector upon invoking the identity 

P - P f  = ~ • P x ,  [2 .571 

with ~ the unit alternating triadic and P× the vector invariant of P. From [2.48b], 

= - -  r x ( d s .  b). 
70 o 

[2.581 

Comparison of [2.58] with [2.40a] yields the relation 

P× = N/to. [2.59] 

Equivalently, as a consequence of [2.43], 

P x  4- ~ ( e )  = 0,  [2.60] 

in which 

N(e)  = N(e)/7o [2.61] 

is the external body-couple volumetric density. Equation [2.60] represents a degenerate 
angular momentum equation for a polar continuum (Dahler & Scriven 1963, Brenner 1970 
and Brenner & Weissman 1972), from which couple stress and intrinsic angular momentum 
effects are absent. 

2.5. Energy equation 
The local rate cI, of mechanical energy dissipation (per unit time per unit volume) at each 

point R within the interstitial fluid is classically given by (Aris 1962) 

= Tt : Vv, [2.62] 

where T = P + Ip is the deviatoric part of the local stress O. Thermodynamic principles 
pertaining to irreversible entropy production (Landau & Lifshitz 1958) show that • is a 
non-negative quantity: 

>_ O. [2.63] 
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Equality, in the context of the above inequality, holds only for a rigid body motion. 
The time rate of dissipation 4) (per unit of superficial volume) within the intermediate 

volume fit is defined as 

1 
= ~ f~s ~ d3R" [2.64] 

It too is obviously a non-negative quantity. This macroscopic dissipation rate can be 
functionally expressed in terms of the various macroscopic dynamic and kinematic parame- 
ters occurring in the Darcy-scale characterization of the present problem by use of the 
alternative form, 

= V .  (O. v), [2.65] 

of [2.62] in the integrand of [2.64] (cf. [2.5b]). 
In conjunction with the divergence theorem and the decompositions [2.38] and [2.11] for 

P and v, this eventually yields 

= ( ~ d ~ o ) v  "-  (Uo - ~ *) + N(')  • ( a  - ~ )  + ~ :fi, [2.66] 

to within an error of O(l). 
The preceding expression serves many useful purposes. First, it shows clearly that the 

velocity of physical interest is the relative interstitial velocity ~* - Uo; hence the utility of 
decomposition [2.22] is justified a posteriori. Second, [2.66] can be used to prove uniqueness 
of the solution under prescribed macroscopic conditions, as outlined in the next subsection. 
Last, the symmetry of important matrices (cf. [3.4]) can be readily inferred from [2.66] by 
an application of the Lorentz reciprocal theorem (Hinch 1972), as can their nonnegativity 
too, as a consequence of the inequality • >_ 0. 

Only the bare outlines of a uniqueness proof for the microscopic problem will be 
furnished here. The solution (v, p) of the system of equations [2.3] subject to boundary 
conditions [2.6] is unique at each point R (modulo a rigid body motion), provided that the 
values of the following three parameters are prescribed: 

(i) ~ * - U o  or F('), 

(ii) ~ -  fl or N(~), 

(iii) S or Y. 

[2.67] 

To prove uniqueness under the prescribed data, assume the existence of at least two different 
solutions (v', p') and (v", p") of the specified system of equations and conditions. Then, 
according to [2.66], it is easy to show that the macroscopic and, hence, microscopic 
dissipation rates associated with the difference between these two solutions is zero. An 
alternate expression for the local rate [2.62] is given by the quadratic form 

= 2#S : S. [2.68] 

Hence, the rate-of-strain tensor S' - S" associated with the difference fields vanishes 
everywhere. This implies (Lamb 1932) that the difference velocity field v' - v" between the 
two possible solutions is a rigid body motion. Furthermore, Stokes equations then show the 
difference pressure p' - p" to be zero (modulo an arbitrary constant, which is physically 
irrelevant for incompressible fluids). 
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3. INSTANTANEOUS PROPERTIES 

With the preliminaries developed in section 2, it is a relatively simple matter to apply 
classical matrix methods (Happel & Brenner 1965) to the analysis of these linear systems. It 
is interesting to note here that these methods have already been applied to multiparticle 
systems (Brenner & O'Neill 1972). However, the formidable relative trajectory problems 
which ensue are tractable only for two-particle systems, though within this limited 
two-particle context the scheme is very potent (Adler 1981). The spatial periodicity 
assumption introduced here reduces the multiparticle problem to a single particle problem, 
since only the contents of one cell need be considered in the analysis. This restores the 
tractability of the general trajectory matrix scheme. 

For completeness, a relative interstitial velocity (~* - Uo) contribution is included. The 
existence of such "slip" velocities generally arises from the existence of external forces--as 
in the case of flow through porous media (Brenner & Adler 1985), though such external 
forces are absent for n e u t r a l l y  b u o y a n t  suspensions. Nevertheless, slip velocities can arise 
even for neutrally buoyant particles if they lack a center of symmetry, which fact accounts 
for their inclusion here, at least in part. Inasmuch as the linear scheme which ensues is rather 
classical in format and scope, its exposition will be greatly abbreviated. 

Following Brenner & O'Neill (1972), it is more convenient to use the spatially periodic 
field ~(R) introduced in [2.22] than the actual velocity field v(R). In terms of ~(R), Stokes 
equations of motion may be expressed as 

V p  = u V  • V~ [3.1a] 

and 

V .  ~ ~ 0, [3.1b] 

to which are adjoined the supplementary requirements: 

= ( U 0 - v * )  + ( ~ 2 - 5 )  x r - r . S  onsp, [3.2] 

f~j ~ d3R = 0 [3.3a] 

and 

= spatially periodic, [3.36] 

which follow from [2.27], [2.21] and [2.11]. 
Linearity of the above system requires that each macroscopic dynamical quantity be 

linear in the kinematical entities U0 - ~*, fl - ~ and S. In particular, the hydrodynamic 
force F, couple N and stresslet A exerted by the fluid on a particle may be expressed in terms 
of the "grand resistance matrix" as 

(!)( " i)I: :) = .  ( dro)C+ "K 

\ (r/ro)M N* § 

[3.4] 

subject to the following symmetry relations: 

%, = 'K, j, % ,  = % ,  

NU*k = rkq, MUk = 4~kq, Qukt = Qk,q. 
[3.51 
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These kinetic symmetry relations are a consequence of the Lorentz reciprocal theorem, 
applied to the fluid volume r I contained within the unit cell. The extraneous factor T i l t  o 

appearing in (3.4) arises from the fact that our definition [2.31] of the force includes the 
average pressure gradient (el. Brenner & Adler 1985 for a further discussion of this point in 
the porous medium context, when the force is deduced from the "homogenization" method of 
Bensoussan e t  al .  1978). 

In consequence of the symmetry S-~j = ~i of S, one can arbitrarily set 

¢bUk = ~,kj,  % k  = Zikj, Qijkt = Qtjtk [3.6] 

in the preceding, without loss of generality. Further reduction in the number and nature of 
the independent components of these matrices occurs as a result of the incompressibility 
condition I : ~ = 0 (i.e. S~,- = 0). Moreover, according to the definition of the particle stress 
A;j, which is symmetric and traceless, it necessarily follows that 

Miik = O, Niik ~ O, QiiktSkt = O. [3.7] 

These relationships, together with an obvious classification of the phenomenological 
coefficient matrices into pseudo (axial) and true (polar) tensors, greatly reduce the number 
of independent, nonzero scalar coefficients which must be calculated in the general case. 

The grand resistance matrix defined in [3.4] is a function only of the instantaneous 
geometrical configuration of the system. This consists of the fixed particle shapes and the 
variable relative particle positions and orientations. As such, geometrical symmetry argu- 
ments further reduce the number of independent nonzero components of the previous tensors 
for particular choices of coordinate systems (e.g. "principal axis" systems). The development 
itself and supporting arguments are basically the same as for a single particle in an 
unbounded fluid (Happel & Brenner 1965), though the point group symmetry elements of 
the lattice must be considered simultaneously (Brenner & Adler 1985) in a crystallographic 
sense. Thus, it will suffice to restrict ourselves to a few salient comments. 

Our immediate goals pertain specifically to the important case of centrosymmetric 
particles, including spheres, ellipsoids, disks, rods, etc. (of. Brenner 1974 for a complete 
account), Note that a suspension composed of such particles is itself centrosymmetric, since 
the lattice is always centrally symmetric. In such circumstances, geometric symmetry 
arguments (Brenner 1974) reduce the matrix [3.4] to the form 

(!) (i ° : °) = # "K 

N* § 

[3.8] 

This form significantly simplifies the algebraic structure of the problem. In particular, no 
coupling now exists between the translational motion and the other two motions. This 
suggests the possibility of considering the translational motion independently of the angular 
and shearing motions. 

There is, however, an indirect type of coupling between translational and shear motions, 
whose existence is not apparent from previous considerations, but which is of interest in at 
least several cases. As already mentioned, the grand resistance matrix depends upon the 
geometry of the system. A shearing motion will modify this geometry (see I) and with it the 
translational resistance dyadic 'K too. Hence, the instantaneous sedimentation velocity of 
such a suspension when subjected to steady external forces, e.g. gravity, will be time 
dependent. This situation will be addressed in section 4.4 (cf. [4.32a]). 
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4. AVERAGING PROCEDURE FOR A SUSPENSION OF IDENTICAL SPHERES IN A 
TWO-DIMENSIONAL SHEAR FLOW 

We shall here calculate the average properties of a suspension for the only situation 
whose kinematical properties are currently completely known. This corresponds to a 
suspension composed of identical spheres undergoing one of the two-dimensional motions 
studied in I. Attention will be further focused upon a macroscopically simple shear flow, 
which represents the most important case encountered in practice. It will first be 
demonstrated that the instantaneous geometry of the suspension can be described by a single 
vector. Subsequently, we show how to calculate the average of any variable that is 
functionally dependent upon this vector. Results obtained in this manner are then applied, 
discussed and generalized. 

4.1. Geometry o f  a s imple shear f low 
Recall the major features of a simple shear flow as described in I. Two cases were 

distinguished--slide flow and tube flow, respectively represented in figures 2 and 3. Velocity 
components are given by 

u = G z ,  v = 0 ,  w = 0 .  [4.1] 

The static or time-independent portion of the problem, namely those geometrical 
elements that remain unaltered by the motion, are the lattice vectors Ii, 12, and 133. On the 
other hand, the kinematic portion of the problem is described by the projection of 13 onto the 
x-y plane, which plane is assumed to contain the vectors I1 and 12 [see figure 2(a)]. Actually, 
only the value of this projection modulo the lattice vectors Ii and 12 need be known, as 
depicted in figure 2(b). To further simplify the representation, the inverse transformation 
I. '-1, can be applied to the two-dimensional lattice !1,12 in order to obtain the integer lattice Y, 
defined in I. In this representation, we define 

i(t) ~ k ' - ' .  I~, [rood(l, 1)1, [4.21 

where !~ is the projection of 13 onto the x-y  plane. 
This same reduction can be performed for the tube flow depicted in figure 3. Here, the 

static part of the problem is determined by both il and the projections of 12 and 13 onto the y-z  

plane, whereas the kinematic part is represented by the projections of 12 and 13 onto the x axis, 
namely 

121 = G123t + const, [4.3a] 

131 = G133t + const. [4.3b] 

These two scalars may be regarded as the components of a single vector 1': 

r = ( / 2 , , / 3 , ) .  [4 .4 ]  

Since interest exists in these projections only mod [ !1 [, !' can be divided by ] i~ I in order to 
represent events in the unit square, as before. Hence, ! here denotes 

I 
I(t) = i--;----T (121, 13, ), [rood(l, 1)1. [4.5] 

I!11 

The two possible situations which may arise in a simple shear flow are therefore 
conveniently parametrized by a unique vector i(t), given either by [4.2] or [4.5]. According- 
ly, in the following it will no longer be necessary to distinguish between the separate cases of 
slide and tube flows. 
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(b) 

$ 

i -  
( e l  1 

Figure 2. Slide flow. The planes are given schematically in (a). The projection !; of the basic vector 13 
is shown in the parallelogram il, 12 in (b). Application of equation [4.2] transforms this parallelogram 

into the unit square shown in (c). 

4.2. Ergodic properties and averaging 
Consider a function f which depends only on the geometry of the suspension--for 

example, in the case of spheres, upon the geometry of the lattice A(t). The functionfmay be 
of any tensorial rank. For simple shear flow it will generally depend on both the static and 
kinematic components of the lattice. In order to simplify the representation, the static 
components will not explicitly appear among the arguments off. Thus, notationally we shall 
write 

f [L( t ) l  ------f[l(t)], [4.61 

with I(t) the vector previously defined. Of course, when actually performing specific 
calculations on a lattice, its static elements need be known too. 

The quantity of physical interest will normally prove to be not the instantaneous value of 
the function f ,  but rather its time average, defined as 

[4.7] 

In order to effect this integration, the behavior of l(t) within the unit square must be known. 
According to Weyl's theorem (cf. I) and its main consequences, a distinction must be drawn 
between two possible cases, depending upon the rational or the irrational properties of the 
vector l(t). More precisely, to within a shift in time scale (which is obviously irrelevant in 

t 

Y~ 

(o )  (b )  t2t  

I 

( c )  I 

Figure 3. Tube flow. The tubes are depicted schematically in (a), together with the basic lattice 
vectors. The definition of r is illustrated in (b). This square may be transformed into a unit square 

when equation [4.5] is applied, as shown in (c). 
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view of [4.7]), one may always write 

lx = t + lxo, ly = ~t, [4.8] 

in which t is now dimensionless. Here, lx0 denotes the value of lx at time t = 0. Consequently, 
a distinction must now be drawn between rational and irrational values of the scalar ~. 

4.2.1. ~ is rational. Of course, the choice of time origin is without any import, whereupon 
t = 0 may be arbitrarily chosen such that ly = 0. With this choice, 

lx = t + lxo, (modl ) ,  

ly = (p/q) t ,  (mod 1), [4.9] 

where ~ = p/q ,  with p and q irreducible integers (p ~ 0). The trajectory of the vector I(t) on 
the unit square is illustrated in Fig. 4(a). Note that the pattern depends upon lxo. 

The period of the phenomenon is q. As such, the integral [4.7] may be expressed as 

( f ) = ~ fo q f [ l ( t ) ]  dt. [4.10] 

Denote by .E the pattern made by I on the unit square, and by L its total length. The integral 
( f ) is then modified as 

1 
( f )  = L ~ z  f ( l )  ds, [4.11] 

whose computation now appears in the guise of a purely geometric, time-independent 
problem; ds is the differential element of length on the pattern .£. Observe that the pattern, 
and thus the average ( f ), depends upon the two parameters ~ and lx0. 

4.2.2. ~ is irrational. In this case I varies with time according to the formulas [4.8]. As 
known from I, 1 comes as close as desired to each and every point of the unit square. 
Expressed pictorially, it may be said that the unit square becomes uniformly grey after a 
sufficiently long time. This feature is illustrated in figure 4(b). 

The integral [4.7] may be transformed. In lieu of representing the pattern on the unit 
square, it may be equivalently represented on the parallelogram ABCD shown in figure 4(b). 
Sides AD and BC of this parallelogram are parallel to the trajectory of 1, i.e. their slopes are 
equal to ~. The corresponding nonorthogonal coordinate system describing the location of a 
point within the parallelogram is denoted by a and/3 in figure 4(b). 

The trajectory I intersects the x axis at successive instants t,, separated by the constant 
time interval 

At = 1/~. [4.12] 

( a )  

= 
A B I  ~ x 

1 

Figure 4. Illustration of the averaging process on the unit square for rational trajectories (a) and 
irrational trajectories (b). 
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Hence, the average [4.7] may be subdivided into the sum 

l N 
( f ) = lira NAt  .~-o f t"+'f [l(t)] dt [4.13l 

of contributions from successive intervals, where 

t.+l = t. + At. 

Denote by £ (a) the straight line 

I x = t + a ,  ly=~t, (modl).  [4.14] 

If a. = n~ is the abscissa of the trajectory at time t., [4.13] is easily transformed into the 
form 

( f )  = lim 1 ® 
n-O 

[4.151 

in which 

X~.) = fz(~.) f ( I )  ds. [4.16] 

The stage is now set to apply the basic ergodic theorem treated at length in I. According 
to [2.10] of that reference, 

( f ) = fo I X(a) dot. 

Introduce [4.16] into this relation and perform the requisite change of variables to obtain 

( f )  = fto,,i 2 f ( I )  dxdy. [4.17] 

Expressed in words, the average value of f is equal to its integral over the unit square. 
Apart from its striking simplicity, this result is remarkable in that it is independent of the 

precise value of 6, as well as of the location lxo of the origin. (For ~ rational, it was observed 
that just the opposite happened.) The present conclusion might have been anticipated on 
intuitive grounds. When ~ is irrational, the trajectory visits all the accessible positions with 
uniform probability; hence, one must obtain the same result whatever the precise mode 
(described by ~ and lxo) of visitation. 

These results will now be employed to calculate several interesting properties of 
suspensions undergoing simple shear. 

4.3. Explicit expression of the average in terms of the Fourier components 
The average [4.7] may be calculated in terms of the Fourier components of the functionf 

in the following manner. Being a periodic function of i , fmay  be expanded in the series 

f =  ~--~ f , ,  exp ( -2~r i  k = .  i). [4.181 
IIi 

For the two-dimensional situation to which we are restricted, k,, is given by 

k= = 1 (mist + m2s2), [4.19] 
To 



404 I,. M .  A D L E R  et al. 

with s~ (i = 1, 2) reciprocal basic lattice vectors of the unit square and vector m the diad 
{mj, m2} of integers. Fourier components fro appearing above are readily found to be given by 
the formula 

f,, = Z j12 f e x p  (2~rik,, • 1) ds. [4.20] 

It has now become possible to calculate the various averages. When the coefficient ~ is 
irrational, it is found that according to [4.18] the average o f f  over the unit square is equal to 
the Fourier coefficient fo. Explicitly, 

( f )  =fo (~ irrational). [4.21] 

When ~ is rational, and equal to p /q  (where p and q are irreducible), introduction of 
[4.18] and [4.9] into [4.10] yields 

( f ) = ~ f . , e x p ( - 2 r i r n , l x o ) f o q e X p [ - 2 r i ( m , + m 2 P ) t ] d t  [4.22] 

after exchange of the summation and integration operations. Since the integrand in [4.22] is 
periodic (with a period q) its integral is equal to zero, except when 

ml + m2 p- = 0. [4.23] 
q 

Since p and q are irreducible, the set of solutions of this equation is 

ml = rip, m2 = -nq ,  [4.24] 

when n is an integer. This implies the average [4.22] may be expressed as 

( f )  = ~ .  f,p_,q~exp (-27rinplxo), (p ~ 0). [4.25] 
t l = - ~  

For the sake of completeness, note that the corresponding expression for p = 0, 
corresponding to the case where ! moves parallel to the x axis, is 

( f )  = ~ fo,r,21exp (-27rimflyO), (p = 0). [4.26] 
nl  2 -  - ~  

Similarly, when 1 moves parallel to the y axis (which, loosely speaking, corresponds to 
q = 0), 

( f ) = ~'~ J']m,,ol exp (-27rimff~o). [4.27] 

These calculations show that ( f ) displays a remarkable functional dependence upon the 
parameter ~. It is constant for irrational values of ~, whereas it is given by [4.25] for rational 
values. The appearance of this pathological type of function is certainly unexpected in 
deterministic fluid-mechanical problems. 

An elementary example can be devised to illustrate these effects. Consider a Couette 
flow between corrugated walls, with the surfaces of the upper and lower plates respectively 
described by the equation 

z] = 1 + ~[sin(x - Xo) + sin(y - Yo)] [4.28] 
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and 

z2 = ~(sin x + sin y). [4.291 

The upper plate will be assumed to move with a constant velocity V relative to the lower one. 
This velocity is, of course, parallel to the x-y plane. Coordinates (Xo,Yo) of a given point on 
the upper plate vary with time according to the expressions 

Xo = Vlt + xoo, [4.30] 

Yo = VEt + Yoo. 

Two parameters of physical interest here are the instantaneous force (per unit of wall 
surface area) required to maintain this uniform motion of the upper plate, and its 
time-averaged value. The calculation is analytically feasible for small values of the 
parameter ~, though it quickly leads to tedious algebra. No interesting effects are expected 
until terms of O(~ 2) are included, since the O(e) term vanishes when spatially averaged. The 
second-order term however, remains, and contains expressions of the form exp(_iXo) and 
exp(+_iyo). According to equations [4.25] to [4.27], two exceptional cases occur for special 
values of the integral. These correspond to 

motion parallel to x or y. [4.311 

For the other values of ~, the average is constant and equal to its ergodic value. 
Retention of O(e 3) contributions may be expected to yield terms of the forms exp(+_ 2iXo), 

exp(+_ 2iyo). 

This subsection may be concluded by emphasizing the difference between temporal and 
spatial phenomena with regard to ergodicity. Consider a Poiseuille flow between the pair of 
fixed wavy walls defined by [4.28] and [4.29]. The average properties of such a flow will be 
continuous functions of the direction of the macroscopic pressure drop, in marked contrast to 
the situation just studied. 

4.4. Average properties o f  a suspension undergoing simple shear 
Identical external forces F (e) and couples N (e) will be assumed to act upon each of the 

particles in the suspension. The equations of motion [2.36] and [2.43], together with [3.8], 
imply that the average properties of the suspension are given by 

(Uo - V*) = #-l( 'K-I)  • F(e), 

<12 - 5 )  = ('K -l • 1-):S + #-1<'K-1) • N (e), 

( A )  ~ - ( N *  • r K - 1 )  • N (0 - / x ( N *  • "K - 1  • ¢ - Q ) : S .  

[4.32a] 

[4.32b] 

[4.32c] 

These average properties may be explicitly calculated by the process described in the 
previous subsection, whence they may be regarded as known in principle. Recall that these 
averages will also depend upon the static elements of the kinematic description, as discussed 
in section 4.1. 

Equation [4.32a] represents the average sedimentation velocity of the suspension when 
subjected to the external force F ('). Though this sedimentation is not directly induced by the 
shear, its precise value nevertheless depends upon the shear--more precisely on the pattern 

induced by the shear. This constitutes an interesting feature, in the sense that the 
phenomenon is susceptible to experimental measurement. 

The average angular velocity of the particles (relative to the fluid) is more likely to prove 
an intermediate quantity in the calculations than a directly measured quantity itself. 
Nevertheless, the preceding comments about the sedimentation velocity still remain cogent. 
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Of course, in most rheological studies the quantity of major interest is the average 
particle stress, given by [4.32c], or a variant thereof. Though included for completeness, the 
external couple N ~e) will normally be absent in most circumstances (Brenner 1970 and 
Brenner & Weissman 1972). In such situations the particle stress is then given by the 
expression 

( A )  = - # ( N *  • ' K  - l  • r - -  Q ) : S .  [4.33] 

4.5. Discussion 

Preceding results for the simple shear case are relevant in a variety of potential 
applications, in the sense that all the pertinent rheological properties may be derived in a 
simple but rigorous way. (The word "simple" does not, however, apply to the analytical and 
numerical efforts that must be expended to bring the calculations to fruition.) Once again, 
the essentially geometrical character of these dynamical results bears emphasis. This is, 
perhaps, not surprising in retrospect, since the kinematics have been reduced to a geometric 
evaluation, while the efficacy of the grand resistance matrix, which embodies the dynamical 
elements, stems from the basic fact that it depends only upon the geometrical configuration 
of the system. Obviously, these two independent geometrical elements supplement one 
another nicely, and together from a potent combination, useful perhaps in even more general 
circumstances. 

The second important feature here is the ergodic character, or lack thereof, of the 
process, depending upon the rational or irrational nature of ~. This leads inevitably to the 
fascinating question: "Does a real system choose between these values of 4, and, if so, how?" 
It is interesting to note that the boundaries are neutral with respect to the choice of 
whenever they are compatible with the flow; thus, for a slide flow the walls must be parallel 
to the slide, whereas for a tube flow they must be parallel to the tube. In both cases there 
remains an additional degree of freedom, which is precisely the choice of 4- This is further 
illustrated in figure 5. 

There exist many other examples of indeterminacy arising when inertia is neglected, 
such as the settling orientation of a homogeneous ellipsoidal particle in the Stokes regime 
(Cox 1965) or the Jeffery (1922) "orbit constant" of a neutrally buoyant spheroid 
undergoing rotation in a simple shear flow (Harper & Chang 1968). Hence, the above 
indeterminacy might similarly be removed by the inclusion of inertial effects. However, this 
delicate problem lies beyond the scope of the present Stokesian context. Probabilistic effects, 
such as Brownian motion, afford another possibility for removing the indeterminacy (Leal & 
Hinch 1971 and Hinch & Leal 1972). 

Finally, hyperbolic and elliptic flows deserve at least a few comments. As shown in I, a 
suspension undergoing a hyperbolic flow does not reproduce itself in time. Accordingly, its 
time average is not physically meaningful, even if it is assumed to exist. Elliptic flow 

L,. 
(a) (D) 

Figure 5. Boundaries and simple shear flow: (a) Slide flow. The slides are represented by the 
intermediate planes between the walls. The dircetion 8 of the relative velocity V (parallel to both 
planes) of the two planes is arbitrary; (b) Tube flow. The view is edge on. The walls, the tube and the 
relative velocity V of the two walls are perpendicular to the plane of the figure. The direction O of the 

walls is arbitrary, provided that the walls remain parallel to the tube axis. 
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represents perhaps the simplest case among the class of two-dimensional flows, since it is 
always self reproducing. However, its very simplicity is itself a course of disappointment, 
since it is a relatively easy matter to determine the configurations explored by the suspension 
during each period and to perform the time integrations along these configurations. 

5. C O N C E N T R A T E D  S U S P E N S I O N S  A N D  L U B R I C A T I O N - T H E O R Y  T E C H N I Q U E S  

Application of "lubrication-theory" techniques to the rheology of concentrated suspen- 
sions was pioneered by Frankel & Acrivos (1967). Since the kinematical basis of their 
suspension model is ad hoc, rather than systematic, it is appropriate to briefly review their 
arguments. As the first step, the energy dissipation within the small gap between adjacent 
sphere pairs is calculated using the axial two-sphere solution (Brenner 1961) for two spheres 
approaching one another along their line of centers. Dissipation due to sliding motion 
between the two spheres in relative motion perpendicular to their line of centers is negligible 
when compared to the dissipation arising from the normal component of the motion. The 
relative velocity of the two spheres, as well as the time-average gap between them, are 
estimated from average values. All relative orientations are assumed equally likely, while the 
average gap width is deduced from the specified concentration, assuming a simple cubic 
arrangement of the spheres. 

The following analysis outlines a rigorous approach to this same problem, taking account 
of the temporal evolution of the suspension configuration. Specifically, the general 
techniques developed in previous sections will be employed to analyze these concentrated 
suspensions at the lubrication-theory level of approximation. First, the kinematics will be 
detailed and a general expression obtained for the macroscopic stress tensor. Last, the 
averaging process will be discussed. 

5.1. Kinematics and forces in a linear chain 
Consider the motion of a linear chain of spheres, the centers of which are separated by 

the lattice vector I (figure 6). This situation is reminiscent of the one studied by Zia et al. 
(1967); however, additional sphere chains will eventually be added in order to form the 
complete lattice. Thus, the chains are here considered only for expediency, rather than as 
isolated geometrical entities of interest in their own right. 

Let R and h, respectively, denote the radius of, and gap between, the spheres. From 
previous definitions there results 

l = [ l [ = 2 R  + h. [5.1] 

Restriction to the asymptotic lubrication-theory limit, 

= h / R  << 1, [5.2] 

Figure 6. Linear chain of spheres. 
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thus implies that 

I I I /2R-~ 1. [5.3] 

Referring to figure 6, the velocity of point B relative to A may be expressed as 

v B -  v~ = ! .  a -  2 R ( f l  x l ) ,  
Ill 

[5.4] 

in which G and fl have their previous significance. Whereas G is specified a priori, ~t must be 
determined as part of the solution. Introduction of [5.3] into [5.4] yields 

V B - - V A = I ' G - - O × I .  [5.5a] 

Equivalently, with use of [2.24], 

v8 - vA = ! • S -  (~t - ~ )  × !. [5.5b1 

Subsequent requirements necessitate decomposition of this relative velocity into its tangen- 
tial and normal components, namely 

v. - v~, = l(ii:g) + (i - ii) • ~. I - (a - a) x I, [5.5c] 

in which | ~ l/l. 
Cox (1974) exhaustively treated the hydrodynamics of convex particles almost in contact 

via a rigorous, matched asymptotic form of lubrication theory. His results for two equal 
spheres may be displayed in tensorial form. Thus, the force may be expressed as 

F = -#E- '(3rR/2)I(H:S) + #(In E)TrR[I • S - l(ii:S) - (9 - ~) x !], [5.6] 

in which the first term reflects the effect of the normal motion, and the second the sliding 
motion. 

The torque evaluated at point A is zero since the spheres possess the same angular 
velocity. However, the force [5.6] produces a torque 

No = (1/2)#(In ~)~rR! × [I • § - (t2 - ~) x !] [5.7] 

with respect to the center O of the sphere, wherein the 1/2 factor arises as a consequence of 
the asymptotic approximation [5.3]. 

5.2. Equilibrium and macroscopic stress in a concentrated suspension 
The set of spheres adjacent to an arbitrary reference sphere centered at O is denoted by 

A. In turn, a sphere belonging to A is enumerated by the index i. 
Since the suspension of spheres is centrally symmetric, the total force exerted by the 

adjacent spheres on the reference sphere is necessarily zero. But the total torque is not, as 
may be seen from [5.7]. The torque exerted by sphere 2 on the reference sphere at O is equal 
to that exerted by sphere 1 with respect to the same point. This results in the equilibrium 
condition 

~-'No, ,  = O. [5.8]  
iCA 
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Introduction of [5.7] into [5.8], and subsequent division by I~rR/2 yields 

~ Z ( l n E , )  !, x [ ! , .  S - ( f l  - ~ )  x !,1 = 0 ,  
i E A  

[5.9] 

a requirement that has previously been overlooked (Frankel & Acrivos 1967). It may be 
regarded as furnishing (from the prescribed data) the instantaneous value of the angular 
velocity fi with which the spheres rotate. Here, ¢~ = hi/R. 

The deviatoric part of the macroscopic stress tensor obtained from [2.50b] is 

T = - -  r l - -  % o -~lr . d s . I  ~. [5.101 

This integration is most readily effected by choosing the particular unit cell over which the 
integration is to be performed to be that depicted in figure 6. The dominant contribution to 
this integral arises from those regions lying within the narrow gaps. Moreover, the 
contributions of the several gaps are independent, and hence may be simply added. This sum 
may be further decomposed into the form 

. . . . .  1 i r - ) .  ds- P, [5.111 

where A/2 recalls that the summation is only taken over half of the adjacent spheres. 
However, at the geometrically equivalent points (Brenner 1980) r + and r-  lying on the 
opposite faces (cf. figure 6) s3+i and s3_i of the unit cell, 

ds ÷ = - d s -  

and 

r + = r -  + If, 

whose introduction into [5.11] yields 

Equivalently, since 1,. is position independent, 

The singular part of the preceding integral represents the force F~ exerted by the fluid on 
the reference particle. Consequently, 

For a given i, F~ is given by [5.6], whereupon 

¥ = u~-R y -  [(In E,)I,{I,. • § - I,(i,i,:~) - (a - 5) x !,} 
To i(~_A/2 

- (I/2),;I(I,I:S) ( 3 U ,  - I)]. [5.121 
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y 

Figure 7. Two-dimensional array in a simple shear flow. 

Observe that this relation does not depend upon the algebraic sign of !, an expected 
conclusion. Thus, once again, the sum can be extended over A, rather than A/2, provided 
that a compensatory factor of 1/2 is inserted. Since the total couple exerted by the fluid upon 
the particles is zero as in [5.9], the antisymmetric part o f f  necessarily vanishes, as required 
by [2.57] and [2.60]. Hence, [5.12] may be expressed as 

#rR 
= ~ sym Y" [(In ei){I; • Sl, - (i,i;:g)l,l~ - ii(fl --  ~ )  X ii} 

iCA 

- ( I /2)C'(IA;:§)  (3 | , |~-  n)], [5.131 

in which the angular velocity fl is that obtained from [5.9], and in which sym D = (1/2)(D + 
D~') for any dyadic D. 

This general relationship [5.13], which appears not to have been given before, is 
inhomogeneous with respect to the orders of the various terms in ~i involved; hence, it must be 
manipulated cautiously in order to avoid introducing inconsistencies regarding the order- 
of-magnitude accuracy of subsequent expressions. It provides a convenient compilation of 
the various component motion contributions. Observe that all quantities appearing in this 
expression are objective, as indeed they must be if the equation is to possess physical 
meaning. 

5.3. The averaging problem for a two-dimensional suspension in a simple shear flow 
Attention will be restricted in this section to performing the averaging operation over 

two- rather than three-dimensional suspensions. These display all relevant conceptual 
features, sans unnecessary complications. The pair of basic vectors required to characterize 
the lattice will be denoted ! and m, respectively (see figure 7); however, I will be assumed 
sufficiently large such that (cf. [5.3]) 

1 - 2R --- 0(l), [5.14] 

whence there exists no singularity associated with I. Components of the vector m are 

m: (x, 2R + ~R). [5.15] 

Expressed in component form, the simple shear velocity field is 

u=Gy, v = 0 ,  w = 0 .  [5.16] 
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Lubrication theory applies when x is small, corresponding to almost touching pairs of 
spheres in the lattice. Since fl - ~ possesses a component only in the z direction, its value 
may be obtained from [5.9] as 

n - ~ = ~  x (~a.~) ,  [5.17] 

with ih = m/[ m 1. When the latter is introduced into [5.13], those terms involving In 
vanish. This was to be expected, since the torque requirement [5.9] forbids any rotational slip 
in the situation under investigation. Hence, the macroscopic deviatoric stress reduces to 

#~rR 
= ~ ~-l(mm:g)(3 ~a~a - I). [5.18] 

According to [4.11 ], the time-average stress may be computed from the formula 

( f  ) = ~ j'if~-T [5.19] 

Each component of T may be calculated as a function of the abscissa x. Evaluation of the 
singular portion of [5.19] is most naturally effected via introduction of an inner variable ~, 
defined as 

x = Rel/2~c. [5.20] 

It is now easily verified that the resulting integral is not singular. In other words, terms of 
O(1) result. And such terms are of the same order of magnitude as those deriving from the 
domain lying outside of the lubrication region, and which have thus been neglected in our 
calculations. Consequently, the present calculation must be terminated as being internally 
inconsistent. This disappointing conclusion is related to the fact that there exists no normal 
relative motion of the two spheres at x = 0. 

It might be argued that the rotational slip terms may perhaps lead to singular 
contributions in situations where they do not vanish, in contrast to the current state of affairs. 
However, this argument is spurious, since the contribution of any typical factor of order In e; 
in [5.13] may be confirmed to be nonsingular for the basic reason that the integral of In x is 
finite in the neighborhood of x = 0, despite the fact that In x itself tends to infinity at this 
point. 

The preceding analysis leads to the paradoxical conclusion that the singular terms (if 
any) in concentrated suspensions cannot be derived by rigorous matched asymptotic, 
lubrication-theory-type arguments. For though the instantaneous stress itself tends to 
infinity in the touching-sphere limit, the time-average stress remains perfectly finite. 

In this limit, other "nonhydrodynamic" factors (Cox & Brenner 1967) may predomi- 
nate. Included are such potentially important features as surface roughness, cavitation, 
particle elasticity and lattice disorder, any one of which might give rise to singular behavior 
in the limit. However, it appears premature to embark upon a detailed discussion of the 
relative importance of such phenomena in the interpretation and rationalization of experi- 
mental results. 

6. EXTENSIONS TO NONLINEAR FLOW PHENOMENA 

Preceding results may be extended in a variety of directions. Section 6.1 concerns itself 
with non-Newtonian fluids, as being illustrative of such extensions, by focusing attention on 
two broad classes of such substances. 

As has been emphasized in [2.29], the spatial periodicity of the pressure gradient is a 
basic prerequisite of the previous development. Any constitutive relationships that act to 
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preserve this periodicity will permit retention of many of the prior results. This fact will be 
illustrated in section 6.2 via pertinent comments concerning inertial effects. 

6.1. Non-Newtonian fluids 
For Reiner-Rivlin fluids (cf. Aris 1962) the stress tensor is assumed to be of the generic 

constitutive form 

P = - Ip  + T(S), [6.1] 

where T is any isotropic function of S, not necessarily linear. Stokes' equation [2.3a] now 
adopts the more general form 

Vp = - V .  T(S). [6.2] 

Thus, for circumstances in which S is spatially periodic, this same periodic attribute 
obviously extends to the pressure gradient too. Major elements of prior developments remain 
valid in present circumstances, such as expressions [2.31] for the force, [2.40] for the couple 
and [2.48] for the macroscopic stress. Despite the fact that most of the prior formulas for the 
instantaneous properties of the suspension remain valid, the geometry and flow strength can, 
however, no longer be separated. Rather, any physical quantity g of interest will now appear 
as a nonlinear function, 

g = g(L, G), [6.3] 

of the geometry and of the macroscopic shear itself, in which the time does not explicitly 
appear (since the motion is assumed quasisteady). 

When the suspension undergoes a simple shear G, L becomes an almost periodic function 
of time. Since the motion is compatible (cf. I), g is necessarily a continuous function of L, and 
thus an almost periodic function of time too. As such, according to the properties tabulated in 
section 4.2 of I, g possesses the time-average value 

( g ( L ,  G ) )  = l im  1 _ f r e ( t ( t )  ' G) dt, 
T ~  T J o  

[6.4] 

which is independent of the time origin. Hence, the mean value (g)  of any quantity g of 
physical interest is necessarily well defined. 

Reiner-Rivlin fluids embrace a rather large class of substances, which can be still further 
enlarged by considering fluids for which the stress tensor depends upon the deformation 
history. Though a detailed account of this case will not be presented here, it is nevertheless 
useful to highlight some aspects of the flow problem which were not emphasized before. 

First of all, apart from being spatially periodic, the velocity field needs to be assumed 
almost periodic in time. This latter characteristic is, of course, obvious for a Newtonian fluid, 
as a direct consequence of the almost periodicity of the suspension geometry. Hence, the 
stress tensor--which is a function of the deformation history--must also be almost periodic 
in time, provided that the functional entails functions which transmit the almost periodic 
character (cf. section 4.2 of I). In this event, the previous scheme can be followed, and any 
property g of physical interest computed. 

This case obviously poses the most difficulties, since no separation now exists among the 
three basic ingredients of the problem: history, flow strength and geometry. 
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6.2. Inertial effects 
Thus far, inertial effects have been supposed negligible. Their inclusion yields the 

complete Navier-Stokes equations, 

D¥ 
p~-~ = - V p  + ~tvEv, [6.5] 

with D/Dt the material derivative. Two limiting situations may be distinguished. In the first, 
the quasistatic flow approximation holds, whence the preceding reduces to 

pv • ffv = - t i p  + t~ff2v. [6.6] 

A spatially periodic velocity field thereby implies a spatially periodic pressure gradient. This 
corresponds, for instance, to Darcy flow through a porous medium, a topic that has been 
extensively studied elsewhere (Brenner & Adler 1985). However, when the velocity field is 
not spatially periodic, as happens in the case of sheared suspensions, ffp is no longer spatially 
periodic, whence the present analysis ceases to be applicable. 

The case where unsteady local acceleration terms in [6.5] predominate over convective 
acceleration terms may be of interest, corresponding to the equation 

0v 
O ~  = - f f p  + ~V2v. [6.7] 

This relation is tractable in the present context, since the quintessential linear character of 
the problem is retained. Various fields of interest (or their gradients) are now spatially 
periodic and/or almost periodic in time, whence the present mode of analysis may be brought 
to bear upon their resolution in particular circumstances. 
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A 
A,B 

C, Cu 
D/Dt 

e 

f 

( f )  
fm, f{ml,m2} 

F 
F (e) 

g(L, G) 

h 
h 
i 
I 

NOMENCLATUREt 

set of spheres immediately adjacent to an arbitrary reference sphere 
points on opposite sides of the gap between spheres in figure 6 
hydrodynamic coupling pseudodyadic of a particle 
material derivative 
external 
fluid, or function of arbitrary tensorial rank dependent only upon 
suspension geometry 
time-average value of the function f,  defined in equation [4.7] 
Fourier coefficient defined by equation [4.20] 
hydrodynamic force on particle(s) in cell {n} 
external force exerted upon particle(s) in cell {n} 
hydrodynamic force density defined in equation [2.30] 
function of instanteous suspension geometry and shear 
gap between adjacent spheres 
generic spatially periodic field 
ith sphere 
dyadic idemfactor 

tOnly new symbols, not already introduced in Part I, are defined here. 
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"K, '~Kjj 
~K, ' K~j 

l 

lxo 
! 

£(.) 
m 

m l ,  m2 

Ill 

M, Mi# 
n or In} 

N 
N 

No 
N~e) 

N ~ 
I~i , Ni jk  

o/V" 
oor  0 

o(1) 
o. 

P 

p(R) 

P 
b(R) 

O, Qijk/ 
r 

r ÷, r- 

R 
R 

d3R 

ds 
s,, s,  ln} 

ds 
ds +, ds- 

k,,, discrete vector defined by equation [4.19] in reciprocal lattice vector 
space 
hydrodynamic rotational resistance dyadic of a particle 
hydrodynamic translational resistance dyadic of a particle 
characteristic linear dimension of unit cell or magnitude I I I of 1 
components of the vector 1 
value of Ix at time t = 0 
time-dependent vector defined in equation [4.5] or center-to-center 
vector drawn between adjacent sphere centers 

I,. basic lattice vector 
|~ unit basiclattice vector 
L characteristic linear dimension of suspension appearing in equation 

[2.16], or length of "pattern" in equation [4.11 ] 
£ "intermediate" length scale defined in equation [2.16], or pattern made 

by I on the unit square, as in figure 4 
straight line defined in equation [4.14] 
magnitude of basic lattice vector m 
integers 
diad {m~, m2} of integers, or basic lattice vector in figure 7 
Stokeslet-slip velocity hydrodynamic resistance triadic 
cell n or nth particle 
upper summation limit in equation [4.13] 
hydrodynamic couple 
hydrodynamic torque about the center O of a sphere 
external couple on a particle 
external couple density defined in equation [2.61] 
Stokeslet-angular velocity hydrodynamic resistance pseudotriadic 
number of unit cells contained in the intermediate volume ~Y 
sphere center, origin 
gage symbol expressing an eror of order of the cell size l 
origin at the center of the nth particle or unit cell 
local pressure field, or particle 
macroscopic or bulk pressure 
spatially periodic portion of local pressure field at point R 
vector invariant of macroscopic stress field P, defined in equation [2.57] 
local stress field 
spatially periodic portion of local stress field at point R 
macroscopic stress field in the suspension defined in equation [2.45] 
Stokeslet rate of strain tetradic 
local position vector defined in equation [2.7] 
local position vectors at equivalent points lying on the opposite faces of a 
unit cell 
radius of sphere 
position vector of the center of volume of a domain 
differential volume element 
differential element of length on the pattern £ 
particle surface(s) within cell {n} 
directed element of surface area 
directed surface elements lying at equivalent points on opposite cell 
faces 

sl ith reciprocal basic lattice vector 
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S3+i,  S3- i  

S 
S 

V 
fit 

Ofit 
fits, % 

Yc 

opposite faces of a unit cell, as shown in figure 6 
closed surface bounding a volume r 
local rate-of-strain dyadic defined in eqn [2.4] 
macroscopic rate-of-strain dyadic for the suspension, defined in equation 
[2.241 

t, end of the nth time interval 
At time interval defined in equation [4.12] 
T deviatoric stress dyadic 

mean deviatoric stress dyadic in the suspension, defined in equation 
[2.49] 

Uo velocity of the particle in the zeroth cell 
U, velocity of the particle in the nth cell 

v local fluid velocity vector field 
spatially periodic portion of local fluid velocity vector field defined in 
equation [2.26], and having a zero mean value 

V spatially periodic portion of local fluid velocity vector field defined in 
equation [2.11] 
mean vector velocity field of suspension defined in equation [2.18] 

~* mean interstitial vector velocity field of suspension, defined in equation 
[2.19] 
velocity vector of a plate 
intermediate volume domain 
surface bounding the intermediate volume fit 
fluid and particle domains of the intermediate volume fit 
inner x coordinate defined in equation [5.20] 

zl(x, y), z2(x, y) 
equations of the upper and lower wavy walls bounding a Couette flow 

Greek Letters 
ct,fl 

P 
T 

Oro,Oroln} 
T~ Tij k 

4,,4, 

nonorthogonal coordinate system defining point within a parallelogram 
in figure 4(b) 

a, abscissa of the ! trajectory at time t, (a. = n~) 
dimensionless gap width defined in equation [5.2] 

c unit alternating isotropic triadic 
A antisymmetric portion of the mean shear rate of the suspension, defined 

in equation [2.24] 
viscosity of interstitial fluid 
density of interstitial fluid 
volumetric domain in equation [2.15] 
interstitial fluid volume contained within cell {n} 
outer surface of the nth unit cell zo{n} 
torque-angular slip velocity hydrodynamic resistance triadic 
symmetric portion of the macroscopic stress dyadic, defined in equation 
[2.511 
force-shear rate hydrodynamic resistance triadic 
local and mean rates of energy dissipation, defined in equations [2.62] 
and [2.64] 
mean angular velocity pseudovector of the suspension, defined by 
equation [2.25] 
angular velocity pseudovector of the particle in the nth cell 
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Special Symbols 
spatially periodic function 

- -  suspension- or mean Darcy-scale value 
( ) time-average value defined in equation [4.7] 

" inner stretched variable 
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